廊坊京泉制冷设备有限公司 当前时间: 加入收藏 设为首页
  当前位置:库板网 > 技术文章 >
库板浏览      
联系我们 更多>>     
库板网销售QQ服务: 2895106002
库板网销售QQ服务: 2668243473
库板网网站管理QQ: 2093265772
库板网电子邮箱:  
jingquanzhileng@163.com
jingquanzhileng@sina.cn
 
制冷剂的演变及展望

1.前言

   制冷剂必须具备一定的特性,包括热力学性质(即沸点、蒸发与冷凝压力、单位容积制冷量、循环效率、压缩终了温度等)、安全性(毒性、燃烧性和爆炸性)、腐蚀性与润滑油的溶解性、水溶性、充注量、导热系数等。

   臭氧层的破坏和全球气候变化是当今全球面临的两大主要环境问题。因此,在开发制冷剂时除考虑以上性质外,还需遵循两个重要的选择原则(1)ODP值,即臭氧层破坏潜能;(2)GWP值,即温室效应能力。

   制冷剂本身所必须具备的特性和所要遵循的原则决定了制冷剂的发展方向和演变过程。同时,正因为这样,决定了寻找理想的或者环保的制冷剂之路是非常困难和漫长的。为此,本文回顾了制冷剂的发展历史,探讨了未来发展趋势。

  2.制冷剂的发展史

   从时间上看,制冷剂的发展经历了三个阶段。第一阶段是十九世纪的早期制冷剂;第二阶段是二十世纪时代的CFC与HCFC类制冷剂;第三阶段是二十一世纪的绿色环保制冷剂。

  2.1 早期制冷剂

   1805年,Oliver Evans最早提出了在封闭循环中,使用挥发性流体的思路,用以将水冷冻成冰。具体描述为,在真空下将乙醚蒸发,并将蒸汽泵到水冷式换热器,冷凝后再利 用。1824年, Richard Trevithick首先提出了空气制冷循环设想,但未建成此装置。1834年, Jacob Perkins则第一次开发了蒸气压缩制冷循环,并获得了英国专利(6662号)[1]。在他所设计的蒸气压缩制冷设备中使用二乙醚(乙基醚)作为制冷 剂。

   随着Jacob Perkins所发明的蒸气压缩式制冷设备正式投入使用,从十九世纪三十年代开始陆续开发了一些早期实用的制冷剂。[2]

   Jacob Perkins的助手John Hegel 对这套设备进行了改造并且换了一种特殊的制冷剂-—生橡胶,那是天然橡胶分解蒸馏后得到的挥发性溶液。19世纪,天然橡胶只能从印度进口。因此,乙醚、甲 醚作为主要制冷剂的地位延续到19世纪60年代才逐渐被氨所取代。

   氨/水作为制冷剂是1869年首次应用于美国新奥尔良一家酿造厂的冷冻设备中,设计者是两位法国人。最初没有氨气来源,只能使用氨水,而水份易对制冷系统 造成损害,故早期的制冷设备不得不采用一些临时性的应急手段,如用生石灰或氢氧化钠对氨/水制冷剂进行干燥处理。直到1876年,由克利夫兰的麦克米兰公 司推出了直接适于制冷设备应用的氨/水制冷剂。继氨/水之后又推出了二氧化碳、氯甲烷等早期制冷剂,详见表1。[2]

  表1 早期的制冷剂

时间
制冷剂
化学式
1830
caoutchoucine
 
 
二乙醚 ( 乙基醚 )
CH 3 - CH 2 - O - CH 2 - CH 3
1840s
甲基乙醚 ( R - E 170)
CH 3 - O - CH 3
1850
水 / 硫酸
H 2 O / H 2 SO 4
1856
酒精
CH 3 - CH 2 - OH
1859
氨 / 水
NH 3 / H 2 O
1866
粗汽油
 
 
CO 2
CO 2
1860 s
氨 ( R -717)
NH 3
 
甲基胺 ( R -630)
CH 3 ( NH 2 )
 
乙基胺 ( R -631)
CH 3 - CH 2 ( NH 2 )
1870
甲基酸盐 ( R -611)
HCOOCH 3
1875
二氧化硫 ( R -764)
SO 2
1878
甲基氯化物 , 氯甲烷 ( R -40)
CH 3 Cl
1870 s
氯乙烷 ( R -160)
CH 3 - CH 2 Cl
1891
硫酸与碳氢化合物
H 2 SO 4 , C 4 H 10 , C 5 H 12 ,( CH 3 ) 2 CH - CH 3
1900 s
溴乙烷 ( R -160 Bl )
CH 3 - CH 2 Br
1912
四氯化碳
CCl 4
 
水蒸气 ( R 718)
H 2 O
1920 S
异丁烷 ( R -600 a )
( CH 3 ) 2 CH - CH 3
 
丙烷 ( R -290)
CH 3 - CH 2 - CH 3
1922
二氯乙烷异构体 ( R -1130)
CHCl = CHCl
1923
汽油
HCs
1925
三氯乙烷 ( R -1120)
CHCl = CCl 2
1926
二氯甲烷 ( R -30)
CH 2 Cl 2

多数早期的制冷剂是可燃的或有毒的,或两者兼而有之,而且有些还有很强的反应性。

  2.2 第二阶段―制冷剂CFC和HCFC

  CFC和HCFC制冷剂的发现和开发,源于1928年有人给Thomas Midgley爵士的一个电话。当时他已开发了用四乙化铅改进正辛烷汽油的性能。电话中说,“制冷工业需要一种新制冷剂,而且希望这种制冷剂很易获得。”
   于是他与其助手Albert L.H.和Robert R. M从当时的物性表中搜寻具有合适沸点的化合物,条件是有好的稳定性,无毒和不燃。当时出版的四氟化碳沸点,引导他们的注意力集中到了有机氟化物。氟本身有 毒,但他们认识到含氟的化合物可以是无毒的。当他们意识到当时出版的四氟化碳沸点数据有误后,他们就转向了元素周期表,并且很快地从元素周期表中删除了不 理想的挥发物元素,然后又删除了会导致不稳定、有毒化合物的那些元素以及低沸点的惰性气体元素。最后只剩下8种元素,即C,N,O,S,H,F,C1,和 Br。他们将元素周期表的“行”与“列”组合后,发现元素F位于这8个元素的“行”与“列”的交点。他们进而作了三种有趣的观察并发现:第一,这几种元素 从左到右,可燃性下降;第二,从底下的重元素到顶部的轻元素,毒性下降;第三,当时众所周知的制冷剂无非是除F元素以外的7种元素的组合,唯独没有含F元 素的。于是,他们确定了元素F这个目标。他们通过碳氢化合物氟化或氯化,并说明了化合物成分将如何影响可燃性和毒性。1931年,使得CFC-12(R- 12)商业化。随后,1932年CFC-11(R-11)也被商业化。于是,出于安全性的考虑,一些CFC和HCFC制冷剂陆续得到了开发,逐渐替代了已 使用100年之久的那些早期制冷剂(除NH3外),而成为二十世纪制冷剂的主要潮流,在制冷空调和热泵系统中得到了广泛应用。到目前为止,CFC拥有量大 约为1.14×106t,在世界各国的分布情况见图1。

  图1 CFC在世界各国及地区的分布情况

  2.3第三阶段———HFC和天然制冷剂(1990s—)

  Molina M.J.和Rowland F.S.指出,CFC类物质会产生改变自然界臭氧生长和消亡平衡的氯,从而造成对臭氧层的破坏。[3] 其中,氯元素与臭氧的反应示意图2所示。[4]真正会破坏臭氧层动态平衡的是那些含有氯的气体逸散至同温层中所致,[5]这才是问题的关键。由此引发了人 们对由于人造化合物中含有氯元素而引起的臭氧层变薄的关注。《蒙特利尔议定书》及其修正案对发达国家和发展中国家分别要求和规定了CFC和HCFC制冷剂 的淘汰进程。表2列出了一些替代方案。[6] CFC和HCFC制冷剂的替代成为近年来国际性的热门话题。

图2 氯元素与臭氧的反应过程

  表2几种常用制冷剂的替代方案

  制冷用途

  原制冷剂

  制冷剂替代物

  家用和楼宇空调系统

  HCFC -22

  HFC混合制冷剂

  大型离心式冷水机组

  CFC -11

  CFC -12, R 500

  HCFC -22

  HCFC -123

  HFC— 134 a

  HFC混合制冷剂

  低温冷冻冷藏机组和冷库

  CFC -12

  R 502, HCFC -22

  HFC— 134 a

  HCFC -22, HFC或HCFC混合制冷剂

  冰箱冷柜、汽车空调

  CFC -12

  HFC— 134 a

  HC及其混合物制冷剂

  HCFC混合制冷剂

  国际上,为了应对环保要求的挑战,在寻找、开发替代制冷剂的过程中,逐渐形成了下列两种基本思路和两种替代路线,即:

  1)仍以元素周期表中的“F”元素为中心,在剔除了CI和Br元素后,开发了以F,H,C元素组成 的化合物,即HFCs制冷剂,如HFC-134a、HFC-32、HFC-152a、HFC-143a、HFC-125等及其混合物R407C和 R410A等。但除HFC-152a、HFC-32外,其他HFC制冷剂的GWP值都在1000以上,而被《京都协议书》(1997)列为“温室气体”, 需控制它们的排放量。

  2)以元素周期表中的C、H、N、O等元素组成的天然工质为对象,重新回到了早期制冷剂中的碳氢化合物HCs、CO2、和NH3等制冷剂。[7-10]但其中HCs制冷剂具有强可燃性,CO2的压力很高,制冷效率较低,在实际应用中还受到一定的限制。

  3. 二十一世纪制冷剂的发展趋势与展望

  制冷剂的发展史表明,当前,由于制冷行业目前广泛采用的CFC与HCFC类物质对臭氧层有破坏作用 以及产生温室效应,从而使全球的制冷行业面临着严峻挑战,对CFC与HCFC的替代已成定局。联合国环境保护署于1987年在加拿大的蒙特利尔通过了《关 于消耗臭氧层物质的蒙特利尔议定书》,规定了停止使用CFC类物质的时间表。因此,寻找环保型制冷剂,就成为当前制冷行业迫切而又热门的话题之一。

  目前,各国正在大力开发研究绿色环保制冷剂,以适应环保,特别是保护臭氧层的需要。从目前情况分,替代工质有许多种,潜在的替代物有合成的和天然的两种。

  因此,开发、研究绿色环保型制冷剂是21世纪制冷空调行业的发展趋势和目标。

上一篇:冷库设计技术知识文章 下一篇:酚醛保温板特点